1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{7+6 x-x^2}$ is equal to

A
$\frac{1}{4} \log \left(\frac{1+x}{7-x}\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{8} \log \left(\frac{7-x}{1+x}\right)+\mathrm{c}$, ( where c is a constant of integration)
C
$\frac{1}{4} \log \left(\frac{7-x}{1+x}\right)+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{8} \log \left(\frac{1+x}{7-x}\right)+\mathrm{c}$, (where c is a constant of integration)
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\begin{aligned} \cos \left(18^{\circ}-\mathrm{A}\right) \cos \left(18^{\circ}+\mathrm{A}\right) -\cos \left(72^{\circ}-\mathrm{A}\right) \cos \left(72^{\circ}+\mathrm{A}\right) \text { is equal to }\end{aligned}$

A
$\cos 54^{\circ}$
B
$\cos 36^{\circ}$
C
$\sin 54^{\circ}$
D
$\sin 36^{\circ}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{1+3 \sin ^2 x}=\frac{1}{2} \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$, where c is a constant of integration, then $\mathrm{f}(x)$ is equal to

A
$2 \tan x$
B
$\tan x$
C
$2 \sin x$
D
$\sin x$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X has the following probability distribution

$X$ 1 2 3 4 5
$p(x)$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{p}(x \geq 2)$ is equal to

A
$\frac{35}{36}$
B
$\frac{34}{36}$
C
$\frac{33}{36}$
D
$\frac{31}{36}$
MHT CET Papers
EXAM MAP