1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $P(2,1,5)$ be a point in space and $Q$ be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $3 x-y+4 z=1$ is

A
$\frac{-16}{13}$
B
$\frac{16}{13}$
C
$-\frac{13}{16}$
D
$\frac{13}{16}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^3}$$ is

A
0
B
$\frac{1}{32}$
C
$\frac{1}{8}$
D
$\frac{1}{16}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A ladder 5 m in length is leaning against a wall. The bottom of the ladder is pulled along the ground away from the wall, at the rate of $2 \mathrm{~m} / \mathrm{sec}$. How fast is the height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

A
$\frac{4}{3} \mathrm{~m} / \mathrm{sec}$
B
$\frac{2}{3} \mathrm{~m} / \mathrm{sec}$
C
$\frac{5}{3} \mathrm{~m} / \mathrm{sec}$
D
$\frac{8}{3} \mathrm{~m} / \mathrm{sec}$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the equation $\cos ^4 \theta+\sin ^4 \theta+\lambda=0$ has real solutions for $\theta$, then $\lambda$ lies in the interval

A
$\left(-\frac{5}{4},-1\right)$
B
$\left[-\frac{3}{2},-\frac{5}{4}\right]$
C
$\left(-\frac{1}{2},-\frac{1}{4}\right]$
D
$\left[-1,-\frac{1}{2}\right]$
MHT CET Papers
EXAM MAP