1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to

A
$\frac{3}{2}$
B
$\frac{2}{3}$
C
$-\frac{3}{2}$
D
$-\frac{2}{3}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation $\mathrm{e}^{\sin x}-\mathrm{e}^{-\sin x}=4$ has ̱_________ solutions.

A
2
B
4
C
3
D
no
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{d x}{5+4 \sin x}$ is equal to

A
$\frac{2}{5} \tan ^{-1}\left(\frac{5 \tan \frac{x}{2}+4}{3}\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{2}{3} \tan ^{-1}\left(\frac{5 \tan \frac{x}{2}+4}{3}\right)+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{2}{5} \log \left(\frac{5 \tan \frac{x}{2}+7}{5 \tan \frac{x}{2}+1}\right)+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{2}{3} \log \left(\frac{5 \tan \frac{x}{2}+7}{5 \tan \frac{x}{2}+1}\right)+\mathrm{c}$, (where c is a constant of integration)
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively

A
$\mathrm{F,F,F}$
B
$\mathrm{T}, \mathrm{T}, \mathrm{F}$
C
$\mathrm{T, F, F}$
D
$\mathrm{F}, \mathrm{T}, \mathrm{T}$
MHT CET Papers
EXAM MAP