1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $$f(x)=3 x^3-18 x^2+27 x-40$$ on the set $$\mathrm{S}=\left\{x \in \mathrm{R} / x^2+30 \leq 11 x\right\}$$ is

A
122
B
$$-$$122
C
$$-$$222
D
222
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$f(x)=\int \frac{x^2-3 x+2}{x^4+1} \mathrm{~d} x$$, then function decreases in the interval

A
$$(-\infty,-2)$$
B
$$(-2,-1)$$
C
$$(1,2)$$
D
$$(2, \infty)$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three critics review a book. For the three critics the odds in favour of the book are $$2: 5, 3: 4$$ and $$4: 3$$ respectively. The probability that the majority is in favour of the book, is given by

A
$$\frac{183}{343}$$
B
$$\frac{160}{343}$$
C
$$\frac{209}{343}$$
D
$$\frac{134}{343}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Consider the lines $$\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{\mathrm{z}+1}{2}$$

$$\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{\mathrm{z}-3}{3}$$, then the unit vector perpendicular to both $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ is

A
$$\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
B
$$\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
C
$$\frac{+\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
D
$$\frac{\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$$
MHT CET Papers
EXAM MAP