A solenoid of length $$0.4 \mathrm{~m}$$ and having 500 turns of wire carries a current $$3 \mathrm{~A}$$. A thin coil having 10 turns of wire and radius $$0.1 \mathrm{~m}$$ carries current $$0.4 \mathrm{~A}$$. the torque required to hold the coil in the middle of the solenoid with its axis perpendicular to the axis of the solenoid is $$\left(\mu_0=4 \pi \times 10^{-7}\right.$$ SI units, $$\left.\pi^2=10\right)\left(\sin 90^{\circ}=1\right)$$
In semiconductors at room temperature,
Considering earth to be a sphere of radius '$$R$$' having uniform density '$$\rho$$', then value of acceleration due to gravity '$$g$$' in terms of $$R, \rho$$ and $$\mathrm{G}$$ is
The equation of the wave is $$\mathrm{Y}=10 \sin \left(\frac{2 \pi \mathrm{t}}{30}+\alpha\right)$$ If the displacement is $$5 \mathrm{~cm}$$ at $$\mathrm{t}=0$$ then the total phase at $$\mathrm{t}=7.5 \mathrm{~s}$$ will be $$\left(\sin 30^{\circ}=0.5\right)$$