$$\mathrm{p}$$ is the length of perpendicular from the origin to the line whose intercepts on the axes are a and $$\mathrm{b}$$ respectively, then $$\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}$$ equals
$$\text { If } f(x)= \begin{cases}3\left(1-2 x^2\right) & ; 0< x < 1 \\ 0 & ; \text { otherwise }\end{cases}$$ is a probability density function of $$\mathrm{X}$$, then $$\mathrm{P}\left(\frac{1}{4} < x < \frac{1}{3}\right)$$ is
$$\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=A \cos x+B \log \mathrm{f}(x)+c$$ (where $$\mathrm{c}$$ is a constant of integration). Then values of $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{f}(x)$$ are
If $$y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots(\mathrm{n} x+1)]^n$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is