If the angles $$\mathrm{A}, \mathrm{B}$$, and $$\mathrm{C}$$ of a triangle are in an Arithmetic Progression and if $$\mathrm{a}, \mathrm{b}$$ and $$\mathrm{c}$$ denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $$\frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A}$$ is
A linguistic club consists of 6 girls and 4 boys. A team of 4 members is to be selected from this group including the selection of a leader (from among these 4 members) for the team. If the team has to include at most one boy, the number of ways of selecting the team is
The maximum value of the function $$f(x)=3 x^3-18 x^2+27 x-40$$ on the set $$\mathrm{S}=\left\{x \in \mathrm{R} / x^2+30 \leq 11 x\right\}$$ is
Let $$f(x)=\int \frac{x^2-3 x+2}{x^4+1} \mathrm{~d} x$$, then function decreases in the interval