1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are unit vectors and $$\theta$$ is angle between $$\overline{\mathrm{a}}$$ and $$\bar{c}$$ and $$\bar{a}+2 \bar{b}+2 \bar{c}=\overline{0}$$, then $$|\bar{a} \times \bar{c}|=$$

A
$$\frac{\sqrt{15}}{2}$$
B
$$\frac{\sqrt{15}}{4}$$
C
$$\sqrt{15}$$
D
$$\frac{\sqrt{15}}{3}$$
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{\frac{2}{3}} x \operatorname{cosec}^{\frac{4}{3}} x d x$$ is equal to

A
$$3^{\frac{5}{6}}-3^{\frac{2}{3}}$$
B
$$3^{\frac{7}{6}}-3^{\frac{5}{6}}$$
C
$$3^{\frac{5}{3}}-3^{\frac{1}{3}}$$
D
$$3^{\frac{4}{3}}-3^{\frac{1}{3}}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal solutions of the equation $$\sec x+\tan x=2 \cos x$$ are

A
$$\frac{\pi}{6}, \frac{5 \pi}{6}$$
B
$$\frac{\pi}{6}, \frac{\pi}{20}$$
C
$$\frac{\pi}{6}, \frac{2 \pi}{3}$$
D
$$\frac{\pi}{6}, \frac{\pi}{12}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors with magnitudes $$\sqrt{3}$$, 1, 2 respectively, such that $$\bar{a} \times(\bar{a} \times \bar{c})+3 \bar{b}=\overline{0}$$, if $$\theta$$ is the angle between $$\bar{a}$$ and $$\bar{c}$$, then $$\sec ^2 \theta$$ is

A
1
B
$$\frac{3}{2}$$
C
$$\frac{4}{3}$$
D
$$\frac{2}{\sqrt{3}}$$
MHT CET Papers
EXAM MAP