1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Considering earth to be a sphere of radius '$$R$$' having uniform density '$$\rho$$', then value of acceleration due to gravity '$$g$$' in terms of $$R, \rho$$ and $$\mathrm{G}$$ is

A
$$g=\sqrt{\frac{3 \pi R}{\rho G}}$$
B
$$\mathrm{g}=\sqrt{\frac{4}{3} \pi \rho \mathrm{GR}}$$
C
$$\mathrm{g}=\frac{4}{3} \pi \rho \mathrm{GR}$$
D
$$g=\frac{G M}{\rho R^2}$$
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The equation of the wave is $$\mathrm{Y}=10 \sin \left(\frac{2 \pi \mathrm{t}}{30}+\alpha\right)$$ If the displacement is $$5 \mathrm{~cm}$$ at $$\mathrm{t}=0$$ then the total phase at $$\mathrm{t}=7.5 \mathrm{~s}$$ will be $$\left(\sin 30^{\circ}=0.5\right)$$

A
$$\frac{\pi}{3} \mathrm{~rad}$$
B
$$\frac{\pi}{2} \mathrm{~rad}$$
C
$$\frac{2 \pi}{5} \mathrm{~rad}$$
D
$$\frac{2 \pi}{3} \mathrm{~rad}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The bob of simple pendulum of length '$$L$$' is released from a position of small angular displacement $$\theta$$. Its linear displacement at time '$$\mathrm{t}$$' is ( $$\mathrm{g}=$$ acceleration due to gravity)

A
$$L \theta \cos \left[\sqrt{\frac{g}{L}} \cdot t\right]$$
B
$$L \theta \sin \left[2 \pi \sqrt{\frac{g}{L}} \cdot t\right]$$
C
$$L \theta \cos \left[2 \pi \sqrt{\frac{g}{L}} \cdot t\right]$$
D
$$L \theta \sin \left[\sqrt{\frac{g}{L}} \cdot t\right]$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The value of acceleration due to gravity at a depth '$$d$$' from the surface of earth and at an altitude '$$h$$' from the surface of earth are in the ratio

A
$$1: 1$$
B
$$\frac{R-2 h}{R-d}$$
C
$$\frac{R-d}{R-2 h}$$
D
$$\frac{\mathrm{R}-\mathrm{d}}{\mathrm{R}-\mathrm{h}}$$
MHT CET Papers
EXAM MAP