1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the line $$x-2 y=\mathrm{m}(\mathrm{m} \in \mathrm{Z})$$ intersects the circle $$x^2+y^2=2 x+4 y$$ at two distinct points, then the number of possible values of $m$ are

A
8
B
9
C
10
D
11
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors such that $$|\bar{a}+\bar{b}+\bar{c}|=1, \overline{\mathrm{c}}=\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$$ and $$|\overline{\mathrm{a}}|=\frac{1}{\sqrt{3}},|\overline{\mathrm{b}}|=\frac{1}{\sqrt{2}},|\overline{\mathrm{c}}|=\frac{1}{\sqrt{6}}$$, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is

A
$$\frac{\pi}{6}$$
B
$$\frac{\pi}{4}$$
C
$$\frac{\pi}{3}$$
D
$$\frac{\pi}{2}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation $$x^3+x-1=0$$ has

A
no real root.
B
exactly two real roots.
C
exactly one real root.
D
more than two real roots.
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}, \bar{b}, \bar{c}$$ be three vectors such that $$|\bar{a}|=\sqrt{3}, |\bar{b}|=5, \bar{b} \cdot \bar{c}=10$$ and the angle between $$\bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{3}$$. If $$\bar{a}$$ is perpendicular to the vector $$\bar{b} \times \bar{c}$$, then $$|\bar{a} \times(\bar{b} \times \bar{c})|$$ is equal to

A
$$10 \sqrt{3}$$
B
$$5 \sqrt{3}$$
C
60
D
30
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12