1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots(\mathrm{n} x+1)]^n$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

A
$$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$$
B
$$\frac{\mathrm{n}^2(\mathrm{n}+1)}{2}$$
C
$$\frac{\mathrm{n}(\mathrm{n}+1)}{4}$$
D
$$\frac{\mathrm{n}^2(\mathrm{n}-1)}{2}$$
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{B} \equiv(0,3)$$ and $$\mathrm{C} \equiv(4,0)$$. The point $$\mathrm{A}$$ is moving on the line $$y=2 x$$ at the rate of 2 units/second. The area of $$\triangle \mathrm{ABC}$$ is increasing at the rate of

A
$$\frac{11}{\sqrt{5}}$$ (units)$$^2$$/ $$\mathrm{sec}$$
B
$$\frac{11}{5}$$ (units)$$^2$$/ $$\mathrm{sec}$$
C
$$\frac{13}{\sqrt{5}}$$ (units)$$^2$$/ $$\mathrm{sec}$$
D
$$\frac{13}{5}$$ (units)$$^2$$/ $$\mathrm{sec}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \infty} x^3\left\{\sqrt{x^2+\sqrt{1+x^4}}-x \sqrt{2}\right\}=$$

A
$$\frac{1}{\sqrt{2}}$$
B
$$\frac{1}{4 \sqrt{2}}$$
C
$$\frac{-1}{4 \sqrt{2}}$$
D
$$\frac{-1}{\sqrt{2}}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The money invested in a company is compounded continuously. If ₹ 200 invested today becomes ₹ 400 in 6 years, then at the end of 33 years it will become ₹

A
$$1600 \sqrt{2}$$
B
$$3200 \sqrt{2}$$
C
$$12800 \sqrt{2}$$
D
$$6400 \sqrt{2}$$
MHT CET Papers
EXAM MAP