1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{\frac{2}{3}} x \operatorname{cosec}^{\frac{4}{3}} x d x$$ is equal to

A
$$3^{\frac{5}{6}}-3^{\frac{2}{3}}$$
B
$$3^{\frac{7}{6}}-3^{\frac{5}{6}}$$
C
$$3^{\frac{5}{3}}-3^{\frac{1}{3}}$$
D
$$3^{\frac{4}{3}}-3^{\frac{1}{3}}$$
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal solutions of the equation $$\sec x+\tan x=2 \cos x$$ are

A
$$\frac{\pi}{6}, \frac{5 \pi}{6}$$
B
$$\frac{\pi}{6}, \frac{\pi}{20}$$
C
$$\frac{\pi}{6}, \frac{2 \pi}{3}$$
D
$$\frac{\pi}{6}, \frac{\pi}{12}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors with magnitudes $$\sqrt{3}$$, 1, 2 respectively, such that $$\bar{a} \times(\bar{a} \times \bar{c})+3 \bar{b}=\overline{0}$$, if $$\theta$$ is the angle between $$\bar{a}$$ and $$\bar{c}$$, then $$\sec ^2 \theta$$ is

A
1
B
$$\frac{3}{2}$$
C
$$\frac{4}{3}$$
D
$$\frac{2}{\sqrt{3}}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the curve be represented by $$x=2(\cos t+t \sin t), y=2(\sin t-t \cos t)$$. Then normal at any point '$$t$$' of the curve is at a distance of ______ units from the origin.

A
1
B
0
C
2
D
4
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12