1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\text { If } f(x)= \begin{cases}3\left(1-2 x^2\right) & ; 0< x < 1 \\ 0 & ; \text { otherwise }\end{cases}$$ is a probability density function of $$\mathrm{X}$$, then $$\mathrm{P}\left(\frac{1}{4} < x < \frac{1}{3}\right)$$ is

A
$$\frac{75}{243}$$
B
$$\frac{23}{96}$$
C
$$\frac{179}{864}$$
D
$$\frac{52}{243}$$
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\sin x+\sin ^3 x}{\cos 2 x} d x=A \cos x+B \log \mathrm{f}(x)+c$$ (where $$\mathrm{c}$$ is a constant of integration). Then values of $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{f}(x)$$ are

A
$$\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{-3}{4 \sqrt{2}}, \mathrm{f}(x)=\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}$$
B
$$A=-\frac{1}{2}, B=\frac{-3}{4 \sqrt{2}}, \mathrm{f}(x)=\frac{\sqrt{2} \cos x+1}{\sqrt{2} \cos x-1}$$
C
$$\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{-3}{4 \sqrt{2}}, \mathrm{f}(x)=\frac{\sqrt{2} \cos x+1}{\sqrt{2} \cos x-1}$$
D
$$\mathrm{A}=\frac{3}{2}, \mathrm{~B}=\frac{1}{2}, \mathrm{f}(x)=\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots(\mathrm{n} x+1)]^n$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ at $$x=0$$ is

A
$$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$$
B
$$\frac{\mathrm{n}^2(\mathrm{n}+1)}{2}$$
C
$$\frac{\mathrm{n}(\mathrm{n}+1)}{4}$$
D
$$\frac{\mathrm{n}^2(\mathrm{n}-1)}{2}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{B} \equiv(0,3)$$ and $$\mathrm{C} \equiv(4,0)$$. The point $$\mathrm{A}$$ is moving on the line $$y=2 x$$ at the rate of 2 units/second. The area of $$\triangle \mathrm{ABC}$$ is increasing at the rate of

A
$$\frac{11}{\sqrt{5}}$$ (units)$$^2$$/ $$\mathrm{sec}$$
B
$$\frac{11}{5}$$ (units)$$^2$$/ $$\mathrm{sec}$$
C
$$\frac{13}{\sqrt{5}}$$ (units)$$^2$$/ $$\mathrm{sec}$$
D
$$\frac{13}{5}$$ (units)$$^2$$/ $$\mathrm{sec}$$
MHT CET Papers
EXAM MAP