1
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{x^3 \mathrm{~d} x}{\sqrt{1+x^2}}=\mathrm{a}\left(1+x^2\right) \sqrt{1+x^2}+\mathrm{b} \sqrt{1+x^2}+\mathrm{c}$$ (where $$\mathrm{c}$$ is a constant of integration), then the value of $$3 \mathrm{ab}$$ is

A
$$-$$3
B
$$-$$1
C
1
D
3
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The perpendiculars are drawn to lines $$L_1$$ and $$L_2$$ from the origin making an angle $$\frac{\pi}{4}$$ and $$\frac{3 \pi}{4}$$ respectively with positive direction of $$\mathrm{X}$$-axis. If both the lines are at unit distance from the origin, then their joint equation is

A
$$x^2-y^2+2 \sqrt{2} y+2=0$$
B
$$x^2-y^2-2 \sqrt{2} y-2=0$$
C
$$x^2-y^2+2 \sqrt{2} y-2=0$$
D
$$x^2-y^2-2 \sqrt{2} y+2=0$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $$\mathrm{f}(x)=[x] \cdot \cos \left(\frac{2 x-1}{2}\right) \pi$$, where $$[\cdot]$$ denotes the greatest integer function, is discontinuous at

A
all irrational numbers $$x$$.
B
no $$x$$.
C
all integer points.
D
every rational $$x$$ which is not an integer.
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A line with positive direction cosines passes through the point $$\mathrm{P}(2,-1,2)$$ and makes equal angles with the co-ordinate axes. The line meets the plane $$2 x+y+z=9$$ at point $$\mathrm{Q}$$. The length of the line segment $$P Q$$ equals

A
3
B
$$\sqrt{2}$$
C
$$\sqrt{3}$$
D
2
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12