1
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of the function $$f(t)$$ is given by $$f\left( s \right) = L\left\{ {f\left( t \right)} \right\} = \int\limits_0^\infty {f\left( t \right){e^{ - st}}\,dt.} $$

Laplace transform of the function shown below is given by.

GATE ME 2015 Set 3 Engineering Mathematics - Transform Theory Question 5 English
A
$${{1 - {e^{ - 2s}}} \over s}$$
B
$${{1 - {e^{ - s}}} \over s}$$
C
$${{2 - 2{e^{ - s}}} \over s}$$
D
$${{1 - 2{e^{ - s}}} \over s}$$
2
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\phi $$ be an arbitrary smooth real valued scalar function and $$\overrightarrow V $$ be an arbitrary smooth vector valued function in a three dimensional space. Which one of the following is an identity?
A
$$Curl\left( {\phi \overrightarrow V } \right) = \nabla \left( {\phi Div\overrightarrow V } \right)$$
B
$${Div\overrightarrow V = 0}$$
C
$${Div\,\,Curl\,\,\overrightarrow V = 0}$$
D
$$Div\,\,\left( {\phi \overrightarrow V } \right) = \phi Div\overrightarrow V $$
3
GATE ME 2015 Set 3
Numerical
+1
-0
The lowest eigen value of the $$2 \times 2$$ matrix $$\left[ {\matrix{ 4 & 2 \cr 1 & 3 \cr } } \right]$$ is ______.
Your input ____
4
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
For a given matrix $$P = \left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right],$$ where $$i = \sqrt { - 1} ,$$ the inverse of matrix $$P$$ is
A
$${1 \over {24}}\left[ {\matrix{ {4 - 3i} & i \cr { - i} & {4 + 3i} \cr } } \right]$$
B
$${1 \over {25}}\left[ {\matrix{ i & {4 - 3i} \cr {4 + 3i} & i \cr } } \right]$$
C
$${1 \over {24}}\left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right]$$
D
$${1 \over {25}}\left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12