1
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
A spherical thermocouple junction of diameter $$0.706 mm$$ is to be used for the measurement of temperature of a gas stream. The convective heat transfer co-efficient on the bead surface is $$400W/{m^2}K.$$ Thermo-physical properties of thermocouple material are
$$k = 20W/mK,$$ $$C = 400J/kgK$$ and $$\rho = 8500\,\,kg/{m^3}.$$ If the thermocouple initially at $${30^ \circ }C$$ is placed in a hot stream of $${300^ \circ }C$$ the time taken by the bead to reach $${298^ \circ }C$$, is
A
$$2.35s$$
B
$$4.9s$$
C
$$14.7s$$
D
$$29.4s$$
2
GATE ME 2004
MCQ (Single Correct Answer)
+1
-0.3
One dimensional unsteady state heat transfer equation for a sphere with heat generation at the rate $$'{q_g}',$$ can be written as
A
$${1 \over {r^2}}\,{\partial \over {\partial r}}\left( {r{{\partial T} \over {\partial r}}} \right) + {q \over k} = {1 \over \alpha }\,{{\partial T} \over {\partial t}}$$
B
$${1 \over {r^2}}\,{\partial \over {\partial r}}\left( {{r^2}{{\partial T} \over {\partial r}}} \right) + {q \over k} = {1 \over \alpha }\,{{\partial T} \over {\partial t}}$$
C
$${{{\partial ^2}T} \over {\partial {r^2}}} + {q \over k} = {1 \over \alpha }\,{{\partial T} \over {\partial t}}$$
D
$${{{\partial ^2}} \over {\partial {r^2}}}\left( {rT} \right) + {q \over k} = {1 \over \alpha }\,{{\partial T} \over {\partial t}}$$
3
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
A company produces two types of toys: $$P$$ and $$Q.$$ Production time of $$Q$$ is twice that of $$P$$ and the company has a maximum of $$2000$$ time units per day. The supply of raw material is just sufficient to produce $$1500$$ toys (of any type) per day. Toy type $$Q$$ requires an electric switch which is available @ $$600$$ pieces per day only. The company makes a profit of Rs.$$3$$ and Rs.$$5$$ on type $$P$$ and $$Q$$ respectively. For maximization of profits, the daily production quantities of $$P$$ and $$Q$$ toys should respectively be
A
$$100, 500$$
B
$$500,1000$$
C
$$800,600$$
D
$$1000,1000$$
4
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
A maintenance service facility has Poisson arrival rates, negative exponential service time and operates on a ‘first come first served’ queue discipline. Breakdowns occur on an average of $$3$$ per day with a range of zero to eight. The maintenance crew can service an average of $$6$$ machines per day with a range of zero to seven. The mean waiting time for an item to be serviced would be
A
$${1 \over 6}$$ day
B
$${1 \over 3}$$ day
C
$$1$$ day
D
$$3$$ day
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12