1
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
Consider the following C function.
float f,(float x, int y) {
    float p, s; int i;
    for (s=1,p=1,i=1; i < y; i++) {
         p *= x/i;
         s+=p;
    }
return s;
}
For large values of y, the return value of the function f best approximates
A
Xy
B
ex
C
$$\ln (1 + x)$$
D
Xx
2
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
Consider the set $$\sum {^ * } $$ of all strings over the alphabet $$\,\sum { = \,\,\,\left\{ {0,\,\,\,1} \right\}.\sum {^ * } } $$ with the concatenation operator for strings
A
Does not from a group
B
Forms a non-commutative group
C
Does not have a right identity element
D
Forms a group if the empty string is removed from $${\sum {^ * } }$$
3
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
The regular expression $${0^ * }\left( {{{10}^ * }} \right){}^ * $$denotes the same set as
A
$$\left( {{1^ * }0} \right){}^ * {1^ * }$$
B
$$0 + \left( {0 + 10} \right){}^ * $$
C
$$\left( {0 + 1} \right){}^ * 10\left( {0 + 1} \right){}^ * $$
D
None of the above.
4
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
Define Languages $${L_0}$$ and $${L_1}$$ as follows
$${L_0} = \left\{ { < M,\,w,\,0 > \left| {M\,\,} \right.} \right.$$ halts on $$\left. w \right\}$$
$${L_1} = \left\{ { < M,w,1 > \left| M \right.} \right.$$ does not halts on $$\left. w \right\}$$

Here $$ < M,\,w,\,i > $$ is a triplet, whose first component, $$M$$ is an encoding of a Turing Machine, second component, $$w$$, is a string, and third component, $$t,$$ is a bit.
Let $$L = {L_0} \cup {L_1}.$$ Which of the following is true?

A
$$L$$ is recursively enumerable, but $$\overline L $$ is not
B
$$\overline L $$ is recursively enumerable, but $$L$$ is not
C
Both $$L$$ and $$\overline L $$ are recursive
D
Neither $$L$$ nor $$\overline L $$ is recursive enumerable
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12