1
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ be a sequence of $$8$$ distinct integers sorted in ascending order. How many distinct pairs of sequence, $$B$$ and $$C$$ are there such that
i) Each is sorted in ascending order.
ii) $$B$$ has $$5$$ and $$C$$ has $$3$$ elements, and
iii) The result of merging $$B$$ $$C$$ gives $$A$$?
A
$$2$$
B
$$30$$
C
$$56$$
D
$$256$$
2
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
$$n$$ couples are invited to a party with the condition that every husband should be accompanied by his wife. However, a wife need not be accompanied by her husband. The number of different gatherings possible at the party is
A
$$\left( {\matrix{ {2n} \cr n \cr } } \right) * {2^n}$$
B
$${3^n}$$
C
$${{\left( {2n} \right)!} \over {{2^n}}}$$
D
$$\left( {\matrix{ {2n} \cr n \cr } } \right)$$
3
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
$$m$$ identical balls are to be placed in $$n$$ distinct bags. You are given that $$m \ge kn$$, where $$k$$ is a natural number $$\ge 1$$. In how many ways can the balls be placed in the bags if each bag must contain at least $$k$$ balls?
A
$$\left( {\matrix{ {m - k} \cr {n - 1} \cr } } \right)$$
B
$$\left( {\matrix{ {m - kn + n - 1} \cr {n - 1} \cr } } \right)$$
C
$$\left( {\matrix{ {m - 1} \cr {n - k} \cr } } \right)$$
D
$$\left( {\matrix{ {m - kn + n + k - 2} \cr {n - k} \cr } } \right)$$
4
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
Let $$G$$ be an arbitrary graph with $$n$$ nodes and $$k$$ components. If a vertex is removed from $$G$$, the number of components in the resultant graph must necessarily lie between
A
$$k$$ and $$n$$
B
$$k - 1$$ and $$k + 1$$
C
$$k - 1$$ and $$n - 1$$
D
$$k + 1$$ and $$n -k$$
GATE CSE Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12
© ExamGOAL 2024