1
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
Consider the following three claims
I. (n + k)m = $$\Theta \,({n^m})$$ where k and m are constants
II. 2n+1 = O(2n)
III. 22n = O(22n)
Which of those claims are correct?
A
I and II
B
I and III
C
II and III
D
I, II and III
2
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
In a heap with n elements with the smallest element at the root, the 7th smallest element can be found in time
A
$$\Theta (n \log n)$$
B
$$\Theta (n)$$
C
$$\Theta(\log n)$$
D
$$\Theta(1)$$
3
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
The cube root of a natural number n is defined as the largest natural number m such that $${m^3} \le n$$. The complexity of computing the cube root of n (n is represented in binary notation) is
A
O(n) but not O(n0.5)
B
O(n0.5) but not O((log n)k) for any constant k > 0
C
O((log n)k) for some constant k > 0, but not O((log log n)m) for any constant m > 0
D
O((log log n)k) for some constant k > 0.5, but not O((log log n)0.5)
4
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
The usual $$\Theta ({n^2})$$ implementation of Insertion Sort to sort an array uses linear search to identify the position where an element is to be inserted into the already sorted part of the array. If, instead, we use binary search to identify the position, the worst case running time will
A
remain $$\Theta ({n^2})$$
B
become $$\Theta (n{(\log \,n)^2})$$
C
become $$\Theta (n\log \,n)$$
D
become $$\Theta (n)$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12