1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The system of equations $x+3 b y+b z=0, x+2 a y+a z=0$ and $x+4 c y+c z=0$ has
A
only zero solution for any values of $a, b, c$
B
non-zero solution for any values of $a, b, c$
C
non-zero solution, whenever $b(a+c)=2 a c$
D
non-zero solution, wherever $a+c=2 b$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\left|\begin{array}{ccc}\frac{-b c}{a^{2}} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{a c}{b^{2}} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{a b}{c^{2}}\end{array}\right|=$
A
0
B
4
C
-1
D
$\frac{a^{2}+b^{2}+c^{2}}{a^{2} b^{2} c^{2}}$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{lll}x & y & y \\ y & x & y \\ y & y & x\end{array}\right]$ is a matrix such that $5 A^{-1}=\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$, then $A^2-4 A=$

A
$5 A^{-1}$
B
51
C
0
D
1
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{lll}9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2\end{array}\right]$ and $A A^T-A^2=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\sum\limits_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} a_{i j}=$

A
35
B
0
C
33
D
1
TS EAMCET Subjects
EXAM MAP