The value of 'a' for which the scalar triple product formed by the vectors $$\overrightarrow \alpha = \widehat i + a\widehat j + \widehat k,\overrightarrow \beta = \widehat j + a\widehat k$$ and $$\overrightarrow \gamma = a\widehat i + \widehat k$$ is maximum, is
If the volume of the parallelopiped with $$\overrightarrow a \times \overrightarrow b ,\overrightarrow b \times \overrightarrow c $$ and $$\overrightarrow c \times \overrightarrow a $$ as conterminous edges is 9 cu. units, then the volume of the parallelopiped with $$(\overrightarrow a \times \overrightarrow b ) \times (\overrightarrow b \times \overrightarrow c ),(\overrightarrow b \times \overrightarrow c ) \times (\overrightarrow c \times \overrightarrow a )$$, and $$(\overrightarrow c \times \overrightarrow a ) \times (\overrightarrow a \times \overrightarrow b )$$ as conterminous edges is
If $$\overrightarrow a = \widehat i + \widehat j - \widehat k$$, $$\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c $$ is unit vector perpendicular to $$\overrightarrow a $$ and coplanar with $$\overrightarrow a $$ and $$\overrightarrow b $$, then unit vector $$\overrightarrow d $$ perpendicular to both $$\overrightarrow a $$ and $$\overrightarrow c $$ is
If $${\overrightarrow \alpha }$$ is a unit vector, $$\overrightarrow \beta = \widehat i + \widehat j - \widehat k$$, $$\overrightarrow \gamma = \widehat i + \widehat k$$ then the maximum value of $$\left[ {\overrightarrow \alpha \overrightarrow \beta \overrightarrow \gamma } \right]$$ is