1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $\vec{a}, \vec{b}$ and $\vec{c}$ be vectors of equal magnitude such that the angle between $\vec{a}$ and $\vec{b}$ is $\alpha, \vec{b}$ and $\vec{c}$ is $\beta$ and $\vec{c}$ and $\vec{a}$ is $\gamma$. Then the minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is

A
$\frac{1}{2}$
B
$-\frac{1}{2}$
C
$\frac{3}{2}$
D
$-\frac{3}{2}$
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $\vec{\alpha}=3 \vec{i}-\vec{k},|\vec{\beta}|=\sqrt{5}$ and $\vec{\alpha} \cdot \vec{\beta}=3$, then the area of the parallelogram for which $\vec{\alpha}$ and $\vec{\beta}$ are adjacent sides is

A
$\sqrt{17}$
B
$\sqrt{14}$
C
$\sqrt{7}$
D
$\sqrt{41}$
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors. Suppose $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between $\vec{b}$ and $\vec{c}$ is $\frac{\pi}{6}$. Then $\vec{a}$ is

A
$\vec{b} \times \vec{c}$
B
$\vec{c} \times \vec{b}$
C
$\vec{b}+\vec{c}$
D
$\pm 2(\vec{b} \times \vec{c})$
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

A unit vector in XY-plane making an angle $$45^{\circ}$$ with $$\hat{i}+\hat{j}$$ and an angle $$60^{\circ}$$ with $$3 \hat{i}-4 \hat{j}$$ is

A
$$ \frac{13}{14} \hat{i}+\frac{1}{14} \hat{j} $$
B
$$ \frac{1}{14} \hat{i}+\frac{13}{14} \hat{j} $$
C
$$ \frac{13}{14} \hat{\mathrm{i}}-\frac{1}{14} \hat{\mathrm{j}} $$
D
$$ \frac{1}{14} \hat{i}-\frac{13}{14} \hat{j} $$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12