1
WB JEE 2011
MCQ (Single Correct Answer)
+1
-0.25

Let $$f(x) = {x^3}{e^{ - 3x}},\,x > 0$$. Then the maximum value of f(x) is

A
e$$-$$3
B
3e$$-$$3
C
27e$$-$$9
D
$$\infty$$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\mathrm{U}_{\mathrm{n}}(\mathrm{n}=1,2)$$ denotes the $$\mathrm{n}^{\text {th }}$$ derivative $$(\mathrm{n}=1,2)$$ of $$\mathrm{U}(x)=\frac{\mathrm{L} x+\mathrm{M}}{x^2-2 \mathrm{~B} x+\mathrm{C}}$$ (L, M, B, C are constants), then $$\mathrm{PU}_2+\mathrm{QU}_1+\mathrm{RU}=0$$, holds for

A
$$\mathrm{P}=x^2-2 \mathrm{~B}, \mathrm{Q}=2 x, \mathrm{R}=3 x$$
B
$$\mathrm{P}=x^2-2 \mathrm{~B} x+\mathrm{C}, \mathrm{Q}=4(x-\mathrm{B}), \mathrm{R}=2$$
C
$$\mathrm{P}=2 x, \mathrm{Q}=2 \mathrm{~B}, \mathrm{R}=2$$
D
$$\mathrm{P}=x^2, \mathrm{Q}=x, \mathrm{R}=3$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

$$ \text { If } y=\tan ^{-1}\left[\frac{\log _e\left(\frac{e}{x^2}\right)}{\log _e\left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log _e x}{1-6 \cdot \log _e x}\right] \text {, then } \frac{d^2 y}{d x^2}= $$

A
2
B
1
C
0
D
$$-$$1
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Suppose $$f:R \to R$$ be given by $$f(x) = \left\{ \matrix{ 1,\,\,\,\,\,\,\,\,\,\,\mathrm{if}\,x = 1 \hfill \cr {e^{({x^{10}} - 1)}} + {(x - 1)^2}\sin {1 \over {x - 1}},\,\mathrm{if}\,x \ne 1 \hfill \cr} \right.$$

then

A
f'(1) does not exist
B
f'(1) exists and is zero
C
f'(1) exist and is 9
D
f'(1) exists and is 10
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12