Let $$f(x) = \left\{ {\matrix{ {x + 1,} & { - 1 \le x \le 0} \cr { - x,} & {0 < x \le 1} \cr } } \right.$$
Let $$f(x) = [{x^2}]\sin \pi x,x > 0$$. Then
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {{1 \over {2\,.\,3}} + {1 \over {{2^2}\,.\,3}}} \right) + \left( {{1 \over {{2^2}\,.\,{3^2}}} + {1 \over {{2^3}\,.\,{3^2}}}} \right)\, + \,...\, + \,\left( {{2 \over {{2^n}\,.\,{3^n}}} + {1 \over {{2^{n + 1}}\,.\,3n}}} \right)} \right]$$ is
The values of a, b, c for which the function $$f(x) = \left\{ \matrix{ {{\sin (a + 1)x + \sin x} \over x},x < 0 \hfill \cr c,x = 0 \hfill \cr {{{{(x + b{x^2})}^{{1 \over 2}}} - {x^{{1 \over 2}}}} \over {b{x^{{1 \over 2}}}}},x > 0 \hfill \cr} \right.$$ is continuous at x = 0, are