1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

$$ \text { Let } f(x)=\left|\begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^3 & 2 x \\ \tan x & x & 1 \end{array}\right| \text {, then } \lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}= $$

A
2
B
$$-$$2
C
1
D
$$-$$1
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\alpha, \beta$$ are the roots of the equation $$a x^2+b x+c=0$$ then $$\lim _\limits{x \rightarrow \beta} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\beta)^2}$$ is

A
$$(\alpha-\beta)^2$$
B
$$\frac{1}{2}(\alpha-\beta)^2$$
C
$$\frac{a^2}{4}(\alpha-\beta)^2$$
D
$$\frac{\mathrm{a}^2}{2}(\alpha-\beta)^2$$
3
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

$$\mathop {\lim }\limits_{x \to \infty } \left\{ {x - \root n \of {(x - {a_1})(x - {a_2})\,...\,(x - {a_n})} } \right\}$$ where $${a_1},{a_2},\,...,\,{a_n}$$ are positive rational numbers. The limit

A
does not exist
B
is $${{{a_1} + {a_2}\, + \,...\,{a_n}} \over n}$$
C
is $$\root n \of {{a_1}{a_2}\,...\,{a_n}} $$
D
is $${n \over {{a_1} + {a_2}\, + \,...\,{a_n}}}$$
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$f:[1,3] \to R$$ be continuous and be derivable in (1, 3) and $$f'(x) = {[f(x)]^2} + 4\forall x \in (1,3)$$. Then

A
$$f(3) - f(1) = 5$$ holds
B
$$f(3) - f(1) = 5$$ does not hold
C
$$f(3) - f(1) = 3$$ holds
D
$$f(3) - f(1) = 4$$ holds
WB JEE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12