Let $a_n$ denote the term independent of $x$ in the expansion of $\left[x+\frac{\sin (1 / n)}{x^2}\right]^{3 n}$, then $\lim \limits_{n \rightarrow \infty} \frac{\left(a_n\right) n!}{{ }^{3 n} P_n}$ equals
$$ \text { Let } f(x)=\left|\begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^3 & 2 x \\ \tan x & x & 1 \end{array}\right| \text {, then } \lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}= $$
If $$\alpha, \beta$$ are the roots of the equation $$a x^2+b x+c=0$$ then $$\lim _\limits{x \rightarrow \beta} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\beta)^2}$$ is
$$\mathop {\lim }\limits_{x \to \infty } \left\{ {x - \root n \of {(x - {a_1})(x - {a_2})\,...\,(x - {a_n})} } \right\}$$ where $${a_1},{a_2},\,...,\,{a_n}$$ are positive rational numbers. The limit