NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2022

MCQ (More than One Correct Answer)
English
Bengali

A particle is moving in x-y plane according to $$\overrightarrow r = b\cos \omega t\widehat i + b\sin \omega t\widehat j$$, where $$\omega$$ is constant. Which of the following statement(s) is/are true?

A
$${E \over \omega }$$ is a constant where E is the total energy of the particle.
B
The trajectory of the particle in x-y plane is a circle.
C
In ax - ay plane, trajectory of the particle is an ellipse (ax, ay denotes the components of acceleration)
D
$$\overrightarrow a = {\omega ^2}\overrightarrow v $$

Explanation

Given, trajectory of the particle,

$$\overrightarrow r = b\cos \omega t\widehat i + b\sin \omega t\widehat j$$

It's component can be written as

$$x = b\cos \omega t$$ ..... (i)

$$y = b\sin \omega t$$ ...... (ii)

Both Eqs. (i) and (ii) together represent the circle in x-y plane. Thus, the trajectory of the particle in x-y plane is circle.

Now,

$${{d\overrightarrow r } \over {dt}} = \omega b( - \sin \omega t\widehat i + \cos \omega t\widehat j)$$

$${{{d^2}\overrightarrow r } \over {d{t^2}}} = - b{\omega ^2}(\cos \omega t\widehat i + \sin \omega t\widehat j)$$

$$ = - {\omega ^2}(\overrightarrow r )$$

Therefore, $$\overrightarrow a = - {\omega ^2}\overrightarrow r $$

Hence, option (c) and (d) are incorrect.

Energy of the particle in circular motion is given as $${1 \over 2}m{\omega ^2}{A^2}$$ (where, A is the maximum displacement from the centre), which is constant.

Hence, $${E \over \omega }$$ is also constant.

So, option (a) and (b) are correct.

একটি কণা x-y তলে $$\overrightarrow r = b\cos \omega t\widehat i + b\sin \omega t\widehat j$$ সূত্র অনুযায়ী সঞ্চারণশীল, যেখানে $$\omega$$ একটি ধ্রুবক। সেক্ষেত্রে নীচের কোন উক্তিটি বা কোন কোন উক্তিগুলি সঠিক ?

A
$${E \over \omega }$$ ধ্রুবক যেখানে E হল কণাটির মোট শক্তি
B
x-y তলে কণাটির সঞ্চারপথ বৃত্তাকার
C
ax - ay তলে কণাটির সঞ্চারপথ উপবৃত্তাকার (ax ও ay হল ত্বরণের উপাংশদ্বয়)
D
$$\overrightarrow a = {\omega ^2}\overrightarrow v $$
2

WB JEE 2021

MCQ (More than One Correct Answer)
English
Bengali
The potential energy of a particle of mass 0.02 kg moving along X-axis is given by V = Ax (x $$-$$ 4) J, where x is in metre and A is a constant. Which of the following statements is/are correct?
A
The particle is acted upon by a constant force.
B
The particle executes simple harmonic motion.
C
The speed of the particle is maximum at x = 2 m.
D
The period of oscillation of the particle is $${\pi \over 5}sec$$.

Explanation

Mass, m = 0.02 kg

Potential energy,

$$U = Ax(x - 4)J$$

$$ \Rightarrow U = A{x^2} - 4Ax$$

Force, $$F = - {{dV} \over {dx}} = - {d \over {dx}}(A{x^2} - 4Ax)$$

$$ \Rightarrow F = - 2Ax + 4A$$ .... (i)

This force is dependent on x, hence particle is not acted upon by a constant force.

From Eq. (i), it is clear that f $$\propto$$ $$-$$ x

Hence, particle executes simple hormonic motion. Speed of particle is maximum at equilibrium position, i.e. when F = 0

i.e. $$-$$2Ax + 4A = 0

$$\Rightarrow$$ x = 2m

Period of oscillation,

$$T = 2\pi \sqrt {{m \over k}} $$ .... (i)

From Eq. (i), F = $$-$$2Ax + 4A

Since, value of k will be obtained in terms of A.

Therefore, the value of time period will be also obtained in terms of A, hence option (d) is not correct.
x-অক্ষ বরাবর গতিশীল 0.02 kg ভরের একটি কণার স্থিতিশক্তি V = Ax (x - 4)J, যেখানে A একটি ধ্রুবক এবং x মিটার এককে প্রকাশিত। নিচের কোন উক্তি/উক্তিগুলি সত্য?
A
কণাটির উপর প্রযুক্ত বলের মান ধ্রুবক।
B
কণাটি সরল দোলগতি সম্পন্ন করে।
C
x = 2 m বিন্দুতে কণাটির বেগ সর্বাধিক।
D
কণাটির দোলগতির দোলনকাল $${\pi \over 5}sec$$.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12