1
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \begin{aligned} &\text { If } \omega \neq 1 \text { is a cube root of unity, then }\\ &\left|\begin{array}{ccc} \omega+\omega^2 & \omega^2+\omega^9 & \omega^9+\omega \\ \omega^{27}+\omega^{31} & \omega^{31}+\omega^{17} & \omega^{17}+\omega^{27} \\ \omega^{30}+\omega^{41} & \omega^{41}+\omega^{19} & \omega^{19}+\omega^{30} \end{array}\right|= \end{aligned} $$

A
3
B
2
C
1
D
0
2
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $P$ is a non-singular matrix such that $I+P+P^2+\ldots \ldots+P^n=0(0$ denotes the null matrix $)$, then $P^{-1}=$
A
$P^n$
B
$-P^n$
C
$-\left(1+P+\ldots \ldots+P^n\right)$
D
$-\left(1+P+\ldots \ldots+P^{n-1}\right)$
3
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$ and $\operatorname{det}\left(A^2\right)=25$, then $|\alpha|=$
A
5
B
$5^2$
C
1
D
$\frac{1}{5}$
4
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$P$ is a $3 \times 3$ square matrix and $\operatorname{Tr}(P) \neq 0$. If $\operatorname{Tr}\left(P-P^I\right)+$ $\operatorname{Tr}\left(P+P^T\right)+\frac{\operatorname{Tr}(P)}{\operatorname{Tr}\left(P^T\right)}+\operatorname{Tr}(P) \times \operatorname{Tr}\left(P^T\right)=0$, then $\operatorname{Tr}(P)=$
A
0
B
-1
C
4
D
3
TS EAMCET Subjects
EXAM MAP