1
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \begin{aligned} &\text { If } \omega \neq 1 \text { is a cube root of unity, then }\\ &\left|\begin{array}{ccc} \omega+\omega^2 & \omega^2+\omega^9 & \omega^9+\omega \\ \omega^{27}+\omega^{31} & \omega^{31}+\omega^{17} & \omega^{17}+\omega^{27} \\ \omega^{30}+\omega^{41} & \omega^{41}+\omega^{19} & \omega^{19}+\omega^{30} \end{array}\right|= \end{aligned} $$

A
3
B
2
C
1
D
0
2
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $P$ is a non-singular matrix such that $I+P+P^2+\ldots \ldots+P^n=0(0$ denotes the null matrix $)$, then $P^{-1}=$
A
$P^n$
B
$-P^n$
C
$-\left(1+P+\ldots \ldots+P^n\right)$
D
$-\left(1+P+\ldots \ldots+P^{n-1}\right)$
3
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$ and $\operatorname{det}\left(A^2\right)=25$, then $|\alpha|=$
A
5
B
$5^2$
C
1
D
$\frac{1}{5}$
4
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$P$ is a $3 \times 3$ square matrix and $\operatorname{Tr}(P) \neq 0$. If $\operatorname{Tr}\left(P-P^I\right)+$ $\operatorname{Tr}\left(P+P^T\right)+\frac{\operatorname{Tr}(P)}{\operatorname{Tr}\left(P^T\right)}+\operatorname{Tr}(P) \times \operatorname{Tr}\left(P^T\right)=0$, then $\operatorname{Tr}(P)=$
A
0
B
-1
C
4
D
3
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12