1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}, \mathbf{b}=2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\mathbf{c}=2 \hat{\mathbf{k}}-\hat{\mathbf{i}}$ are three vectors and $\mathbf{d}$ is a unit vector perpendicular to $\mathbf{c}$. If $\mathbf{a}, \mathbf{b}$ and $\mathbf{d}$ are coplanar vectors, then $|\mathbf{d} \cdot \mathbf{b}|=$
A
0
B
$\frac{1}{\sqrt{14}}$
C
$\sqrt{\frac{2}{7}}$
D
$\sqrt{\frac{7}{2}}$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors. If the three points $\lambda a-2 b+c, 2 a+\lambda b-2 \mathbf{c}$ and $4 \mathbf{a}+7 \mathbf{b}-8 \mathbf{c}$ are collinear, then $\lambda=$
A
-1
B
2
C
-2
D
1
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathrm{a}, \mathrm{b}$ are two vectors such that $|\mathrm{a}|=3,|\mathrm{~b}|=4$, $|\mathbf{a}+\mathbf{b}|=\sqrt{37},|\mathbf{a}-\mathbf{b}|=k$ and $(\mathbf{a}, \mathbf{b})=\theta$, then $\frac{4}{13}(k \sin \theta)^2=$
A
1
B
2
C
3
D
4
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$r$ is a vector perpendicular to the planet, determined by the vectors $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, If the magnitude of the projection of $\mathbf{r}$ on the vector $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is l , then $|\mathbf{r}|=$
A
$\sqrt{6}$
B
$3 \sqrt{6}$
C
$\frac{2 \sqrt{6}}{3}$
D
$\frac{3 \sqrt{6}}{2}$
TS EAMCET Subjects
EXAM MAP