1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=3(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $\mathbf{c}$ is a vector such that $\mathbf{a} \times \mathbf{c}=\mathbf{b}$ and $\mathbf{a} . \mathbf{c}=3$, then $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b}-\mathbf{b}-\mathbf{c})=$
A
32
B
24
C
20
D
36
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$P$ and $Q$ are the points of trisection of the segment $A B$. If $2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ are the position vectors of $A$ and $B$ respectively, then the position vector of the point which divides $P Q$ in the ratio $2: 3$ is
A
$\frac{1}{15}(44 \hat{\mathbf{i}}-33 \hat{\mathbf{j}}-18 \hat{\mathbf{k}})$
B
$\frac{1}{5}(36 \hat{\mathbf{i}}-26 \hat{\mathbf{j}}-18 \hat{\mathbf{k}})$
C
$\frac{1}{5}(3 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-9 \hat{\mathbf{k}})$
D
$\frac{1}{15}(-3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+9 \hat{\mathbf{k}})$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The position vector of the point of intersection of the line joining the points $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and the line joining the points $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-7 \hat{\mathbf{k}}$ is
A
$\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
B
$4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$
C
$\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
D
$\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\mathbf{b}=6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are two vectors, then the magnitude of the component of $\mathbf{b}$ parallel to $\mathbf{a}$ is
A
$2 \sqrt{2}$
B
$10 \sqrt{2}$
C
$4 \sqrt{2}$
D
$6 \sqrt{2}$
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12