1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=3(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $\mathbf{c}$ is a vector such that $\mathbf{a} \times \mathbf{c}=\mathbf{b}$ and $\mathbf{a} . \mathbf{c}=3$, then $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b}-\mathbf{b}-\mathbf{c})=$
A
32
B
24
C
20
D
36
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$P$ and $Q$ are the points of trisection of the segment $A B$. If $2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ are the position vectors of $A$ and $B$ respectively, then the position vector of the point which divides $P Q$ in the ratio $2: 3$ is
A
$\frac{1}{15}(44 \hat{\mathbf{i}}-33 \hat{\mathbf{j}}-18 \hat{\mathbf{k}})$
B
$\frac{1}{5}(36 \hat{\mathbf{i}}-26 \hat{\mathbf{j}}-18 \hat{\mathbf{k}})$
C
$\frac{1}{5}(3 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-9 \hat{\mathbf{k}})$
D
$\frac{1}{15}(-3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+9 \hat{\mathbf{k}})$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The position vector of the point of intersection of the line joining the points $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and the line joining the points $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-7 \hat{\mathbf{k}}$ is
A
$\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
B
$4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$
C
$\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
D
$\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\mathbf{b}=6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are two vectors, then the magnitude of the component of $\mathbf{b}$ parallel to $\mathbf{a}$ is
A
$2 \sqrt{2}$
B
$10 \sqrt{2}$
C
$4 \sqrt{2}$
D
$6 \sqrt{2}$
TS EAMCET Subjects
EXAM MAP