1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the coefficient fo $x^{r}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{100}$ is $a_{r}$ and $S=\sum_{r=0}^{300} a_{r}$ then $\sum_{r=0}^{300} r \cdot a_{r}=$
A
(50) S
B
$(25) \mathrm{S}$
C
$(150) \mathrm{S}$
D
$(100) \mathrm{S}$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $X \sim B(6, p)$ is a binomial variate and $\frac{P(X=4)}{P(X=2)}=\frac{1}{9}$, then $p=$
A
$\frac{1}{2}$
B
$\frac{1}{9}$
C
$\frac{1}{3}$
D
$\frac{1}{4}$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $p$ and $q$ are the real numbers such that the 7 th term in the expansion of $\left(\frac{5}{p^3}-\frac{3 q}{7}\right)^8$ is 700 , then $49 p^2=$
A
$4 q^2$
B
$9 q^2$
C
$16 q^2$
D
$25 q^2$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $T_4$ represents the 4 th term in the expansion of $\left(5 x+\frac{7}{x}\right)^{\frac{-3}{2}}$ and $x \notin\left[-\sqrt{\frac{7}{5}}, \sqrt{\frac{7}{5}}\right]$, then $\left(x^7 \sqrt{5 x}\right) T_4=$
A
$\frac{7^4}{2^5 5^3}$
B
$-\frac{7^4}{2^5 5^3}$
C
$-\frac{7^4}{2^4 5^3}$
D
$\frac{7^4}{2^4 5^3}$
TS EAMCET Subjects
EXAM MAP