1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $p$ and $q$ are the real numbers such that the 7 th term in the expansion of $\left(\frac{5}{p^3}-\frac{3 q}{7}\right)^8$ is 700 , then $49 p^2=$
A
$4 q^2$
B
$9 q^2$
C
$16 q^2$
D
$25 q^2$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $T_4$ represents the 4 th term in the expansion of $\left(5 x+\frac{7}{x}\right)^{\frac{-3}{2}}$ and $x \notin\left[-\sqrt{\frac{7}{5}}, \sqrt{\frac{7}{5}}\right]$, then $\left(x^7 \sqrt{5 x}\right) T_4=$
A
$\frac{7^4}{2^5 5^3}$
B
$-\frac{7^4}{2^5 5^3}$
C
$-\frac{7^4}{2^4 5^3}$
D
$\frac{7^4}{2^4 5^3}$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the coefficients of 3 consecutive terms in the expansion of $(1+x)^{23}$ are in arithmetic progression, then those terms are
A
$\mathrm{T}_{10}, \mathrm{~T}_{11}, \mathrm{~T}_{12}$
B
$\mathrm{T}_8, \mathrm{~T}_9, \mathrm{~T}_{10}$
C
$\mathrm{T}_{13}, \mathrm{~T}_{14}, \mathrm{~T}_{15}$
D
$\mathrm{T}_{14}, \mathrm{~T}_{15}, \mathrm{~T}_{16}$
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The numerically greatest term in the expansion of $(3 x-16 y)^{15}$, when $x=\frac{2}{3}$ and $y=\frac{3}{2}$, is
A
13th term
B
14 th term
C
15 th term
D
16 th term
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12