1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $T_4$ represents the 4 th term in the expansion of $\left(5 x+\frac{7}{x}\right)^{\frac{-3}{2}}$ and $x \notin\left[-\sqrt{\frac{7}{5}}, \sqrt{\frac{7}{5}}\right]$, then $\left(x^7 \sqrt{5 x}\right) T_4=$
A
$\frac{7^4}{2^5 5^3}$
B
$-\frac{7^4}{2^5 5^3}$
C
$-\frac{7^4}{2^4 5^3}$
D
$\frac{7^4}{2^4 5^3}$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the coefficients of 3 consecutive terms in the expansion of $(1+x)^{23}$ are in arithmetic progression, then those terms are
A
$\mathrm{T}_{10}, \mathrm{~T}_{11}, \mathrm{~T}_{12}$
B
$\mathrm{T}_8, \mathrm{~T}_9, \mathrm{~T}_{10}$
C
$\mathrm{T}_{13}, \mathrm{~T}_{14}, \mathrm{~T}_{15}$
D
$\mathrm{T}_{14}, \mathrm{~T}_{15}, \mathrm{~T}_{16}$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The numerically greatest term in the expansion of $(3 x-16 y)^{15}$, when $x=\frac{2}{3}$ and $y=\frac{3}{2}$, is
A
13th term
B
14 th term
C
15 th term
D
16 th term
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
For $n \in N$ the largest positive integer that divides $81^n+20 n-1$ is $k$. If $S$ is the sum of all positive divisors of $k$, then $S-k=$
A
117
B
130
C
115
D
127
TS EAMCET Subjects
EXAM MAP