1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\frac{x^{2}}{2 x^{4}+7 x^{2}+6}=\frac{A x+B}{x^{2}+a}+\frac{C x+D}{a x^{2}+3}$, then $A+B+C-2 D=$
A
$2 a$
B
$-2 a$
C
$-4 a$
D
$4 a$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$A=\left[a_{i j}\right]$ is a $3 \times 3$ matrix with positive integers as its elements. Elements of $A$ are such that the sum of all elements of each row is equal to 6 and $a_{22}=2$.

If $\mathrm{a}_{i j}=\left\{\begin{array}{cl}\mathrm{a}_{i j}+\mathrm{a}_{j i}, & j=i+1 \text { when } i < 3 \\ \mathrm{a}_{i j}+\mathrm{a}_{j i}, & j=4-i \text { when } i=3\end{array}\right.$ for $i=1,2,3$, then $|\mathrm{A}|=$

A
6
B
18
C
3
D
12
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $|\operatorname{adj} A|=x$ and $|\operatorname{adj} B|=y$, then $\left|(\operatorname{adj}(A B))^{-1}\right|=$
A
$\frac{1}{x}+\frac{1}{y}$
B
$x y$
C
$\frac{1}{x y}$
D
$x+y$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The system of equations $x+3 b y+b z=0, x+2 a y+a z=0$ and $x+4 c y+c z=0$ has
A
only zero solution for any values of $a, b, c$
B
non-zero solution for any values of $a, b, c$
C
non-zero solution, whenever $b(a+c)=2 a c$
D
non-zero solution, wherever $a+c=2 b$
TS EAMCET Subjects
EXAM MAP