1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The line $y=\mathrm{m} x+3$ is tangent to the parabola $y^2=4 x$, if the value of m is

A
3
B
$\frac{1}{3}$
C
4
D
$\frac{1}{4}$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the tangent and the normal at the point $(\sqrt{3}, 1)$ to the circle $x^2+y^{2 }=4$, and the X -axis form a triangle, then the area (in sq.units) of this triangle is

A
$\frac{1}{\sqrt{2}}$
B
$-\frac{2}{\sqrt{3}}$
C
$\frac{4}{\sqrt{3}}$
D
$\frac{1}{3}$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $3 \sin ^{-1}\left(\frac{2 x}{1+x^2}\right)-4 \cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^2}\right)=\frac{\pi}{3}$ then the value of $x=$

A
$\sqrt{3}$
B
1
C
$\frac{1}{\sqrt{3}}$
D
$\frac{1}{\sqrt{2}}$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\operatorname{acos}^3 \theta y=\operatorname{asin}^3 \theta$

Then $\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2}=$

A
$\tan ^2 \theta$
B
$\sec ^2 \theta$
C
$\sec \theta$
D
$\tan \theta$
MHT CET Papers
EXAM MAP