1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{2 x^2+3}{\left(x^2-1\right)\left(x^2-4\right)} \mathrm{d} x=\log \left[\left(\frac{x-2}{x+2}\right)^{\mathrm{a}} \cdot\left(\frac{x+1}{x-1}\right)^{\mathrm{b}}\right]+\mathrm{c}$, (where c is the constant of integration) then the value of $a+b$ is equal to

A
$\frac{1}{12}$
B
$\frac{21}{12}$
C
$\frac{-1}{12}$
D
$\frac{-21}{12}$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

For $N \in \mathbb{N}, \frac{\mathrm{~d}^{\mathrm{n}}}{\mathrm{d} x^{\mathrm{n}}}(\log x)=$

A
$\frac{(n-1)!}{x^n}$
B
$\frac{n!}{x^n}$
C
$\frac{(\mathrm{n}-2)!}{x^{\mathrm{n}}}$
D
$\quad(-1)^{n-1} \frac{(n-1)!}{x^n}$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a single toss of a fair die, the odds against the event that number 4 or 5 turns up is

A
$2: 1$
B
$1: 3$
C
$2: 3$
D
$1: 1$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x \cdot \mathrm{e}^{x(1-x)}$, then $\mathrm{f}(x)$ is

A
increasing in $\mathbb{R}$
B
increasing in $\left(\frac{-1}{2}, 1\right)$
C
decreasing in $\mathbb{R}$
D
decreasing in $\left[-\frac{1}{2}, 1\right]$
MHT CET Papers
EXAM MAP