1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\bar{a}=\hat{i}-\hat{j}, \bar{b}=\hat{j}-\hat{k}, \bar{c}=\hat{k}-\hat{i}$ then a unit vector $\bar{d}$ such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=0=[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]$ is

A
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{11}}\right)$
B
$\pm\left(\frac{-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\right)$
C
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\right)$
D
$\pm\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}}{\sqrt{6}}\right)$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, if $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4-2 \mathrm{a}^2 \mathrm{c}^2-2 \mathrm{c}^2 \mathrm{~b}^2=0$, then $\angle \mathrm{C}=\ldots$

A
$135^{\circ}$
B
$120^{\circ}$
C
$150^{\circ}$
D
$125^{\circ}$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the planes $\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}})=3$ and $\overline{\mathrm{r}} \cdot(4 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\mu \hat{\mathrm{k}})=5$ are parallel, then $\lambda+\mu=$

A
$\frac{1}{2}$
B
2
C
$\frac{5}{2}$
D
$\frac{7}{2}$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x$ is real, then the difference between the greatest and least values of $\frac{x^2-x+1}{x^2+x+1}$ is

A
$\frac{10}{3}$
B
$\frac{8}{3}$
C
$\frac{5}{3}$
D
$\frac{1}{3}$
MHT CET Papers
EXAM MAP