1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded by the curve $x=2-y-y^2$ and the Y -axis is

A
$\frac{7}{6}$ sq. units
B
$\frac{13}{2}$ sq. units
C
$\frac{9}{2}$ sq. units
D
$\frac{27}{2}$ sq. units
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)+\sec ^{-1}\left(\frac{1+x^2}{1-x^2}\right)$ then the value of $\frac{d y}{d x}$ at $x=\sqrt{3}$ is

A
1
B
$\frac{1}{2}$
C
0
D
$\frac{1}{4}$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{x}{1+\sin x} d x= $$

A
$\pi(\sqrt{3}-2)$
B
$\pi(2-\sqrt{3})$
C
$\pi(\sqrt{3}+2)$
D
$\frac{\pi}{2}(2-\sqrt{3})$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^2 \frac{3 x+1}{x^2+4} d x= $$

A
$\quad \log (2 \sqrt{2})+\frac{\pi}{4}$
B
$\quad \log (2 \sqrt{2})+\frac{\pi}{6}$
C
$\quad \log (2 \sqrt{2})+\frac{\pi}{8}$
D
$\quad \log (2 \sqrt{2})+\frac{\pi}{12}$
MHT CET Papers
EXAM MAP