1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=y(x)$ and $\left(\frac{2+\sin x}{y+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)=$

A
$\frac{1}{3}$
B
$\frac{2}{3}$
C
$-\frac{1}{3}$
D
1
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{cc}1 & \cot \frac{\theta}{2} \\ -\cot \frac{\theta}{2} & 1\end{array}\right]$ then $A^{-1}=$

A
$\operatorname{cosec}^2 \frac{\theta}{2} \mathrm{~A}^{\mathrm{T}}$
B
$\frac{-\sin ^2 \theta}{2} A^T$
C
$\left(\frac{1+\cos \theta}{2}\right) A^T$
D
$\left(\frac{1-\cos \theta}{2}\right) A^T$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are three unit vectors such that $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|^2+|\overline{\mathrm{a}}+\overline{\mathrm{c}}|^2=8$, then $|\overline{\mathrm{a}}+3 \overline{\mathrm{~b}}|^2+|\overline{\mathrm{a}}+3 \overline{\mathrm{c}}|^2=$

A
26
B
32
C
22
D
36
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The probability that a certain kind of component will survive a given test is $\frac{2}{3}$. The probability that at most 2 components out of 4 tested, will survive is

A
$\frac{31}{3^4}$
B
$\frac{32}{3^4}$
C
$\frac{33}{3^4}$
D
$\frac{35}{3^4}$
MHT CET Papers
EXAM MAP