1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\sin 2 x \cos 2 x}{\sqrt{9-\cos ^4 2 x}} d x= $$

A
$\frac{1}{4} \sin ^{-1}\left(\frac{\cos ^2 2 x}{2}\right)+\mathrm{c}$, where c is the constant of integration.
B
$\frac{-1}{4} \sin ^{-1}\left(\frac{\cos ^2 2 x}{2}\right)+\mathrm{c}$, where c is the constant of integration.
C
$\frac{1}{2} \sin ^{-1}\left(\frac{\cos ^2 2 x}{2}\right)+\mathrm{c}$, where c is the constant of integration.
D
$\frac{-1}{2} \sin ^{-1}\left(\frac{\cos ^2 2 x}{2}\right)+\mathrm{c}$, where c is the constant of integration.
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x= $$

A
$2 \cos x+2 x \cos \alpha+\mathrm{c}$, where c is the constant of integration.
B
$2 \cos x-2 x \cos \alpha+\mathrm{c}$, where c is the constant of integration.
C
$2 \sin x+2 x \cos \alpha+c$, where $c$ is the constant of integration.
D
$2 \sin x+2 x \sin \alpha+c$, where $c$ is the constant of integration.
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

21 friends were invited for a party. Two round tables can accommodate 12 and 9 friends each, The number of ways of the seating arrangements of friends is …..

A
$11!\times 8$ !
B
$12!\times 9$ !
C
$\frac{35}{9} \times 19$ !
D
$\frac{20!}{12!8!} \times 11!\times 9$ !
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of a parallelogram whose diagonals are the vectors $2 \bar{a}-\bar{b}$ and $4 \bar{a}-5 \bar{b}$, where $\bar{a}$ and $\bar{b}$ are unit vectors forming an angle of $45^{\circ}$ is

A
$3 \sqrt{2}$ sq. units
B
$\frac{3}{\sqrt{2}}$ sq. units
C
$\sqrt{2}$ sq. units
D
$\frac{\sqrt{2}}{3}$ sq. units
MHT CET Papers
EXAM MAP