1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $3 x=2 y=-\mathrm{z}$ and $-x=6 y=-4 z$ is

A
$\frac{\pi}{3}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{6}$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y+\frac{\mathrm{d}}{\mathrm{d} x}(x y)=x(\sin x+\log x)$ then

A

$y=\cos x+\frac{2 \sin x}{x}+\frac{2}{x^2} \cos x+\frac{x}{3} \log x-\frac{x}{9}+\frac{\mathrm{c}}{x^2}$, where c is the constant of integration.

B

$y=-\cos x-\frac{2}{x} \sin x+\frac{2}{x^2} \cos x+\frac{x}{3} \log x-\frac{x}{9}+\frac{\mathrm{c}}{x^2}$ where c is the constant of integration.

C

$$ \begin{aligned} y=-\cos x+\frac{2}{x} \sin x+ & \frac{2}{x^2} \cos x +\frac{x}{3} \log x-\frac{x}{9}+\frac{c}{x^2}\text { where } \mathrm{c} \text { is the constant of integration. }\end{aligned} $$

D

$y=\cos x-\frac{2}{x} \sin x+\frac{2}{x^3} \cos x+\frac{x}{3} \log x-\frac{x}{9}+\frac{\mathrm{c}}{x^2}$ where $c$ is the constant of intergration.

3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the pair of straight lines $x y-x+y-1=0$ and the line $x+\mathrm{k} y-3=0$ are concurrent, then the value of $k$ is equal to

A
4
B
3
C
-1
D
2
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function

$$ f(x)=\left\{\begin{array}{cc} x+a \sqrt{2} \sin x & \text { if } 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b & \text { if } \frac{\pi}{4} < x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x & \text { if } \frac{\pi}{2} < x \leq \pi \end{array}\right. $$

is continuous in $[0, \pi]$ then $a-b=$

A
$\frac{\pi}{4}$
B
$\frac{\pi}{12}$
C
$\frac{5 \pi}{12}$
D
$\frac{7 \pi}{12}$
MHT CET Papers
EXAM MAP