1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A coin is tossed until one head appears or a tail appears 4 times in succession. The probability distribution of the number of tosses is

A

$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X} & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} & \frac{1}{4} \\ \hline \end{array} $$

B

$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X} & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\ \hline \end{array} $$

C

$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X} & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{8} & \frac{1}{4} & \frac{1}{8} & \frac{1}{2} \\ \hline \end{array} $$

D

$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X} & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \\ \hline \end{array} $$

2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The degree of the differential equation $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+3\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2=x^2 \log \left(\frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}\right)$ is

A
1
B
2
C
3
D
Not defined
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the sum of the squares of the distances of a point $\mathrm{P}(x, y, z)$ from the three co-ordinate axes is 324 , then the distance of point P from the origin is ….

A
18
B
162
C
$9 \sqrt{2}$
D
324
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a real number $x,[x]$ denotes the greatest integer less than or equal to $x$. Then the value of

$$ \begin{array}{r} {\left[\frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{100}\right]+\left[\frac{1}{2}+\frac{2}{100}\right]+\left[\frac{1}{2}+\frac{3}{100}\right]+} \left[\frac{1}{2}+\frac{99}{100}\right]= \end{array} $$

A
49
B
100
C
0
D
50
MHT CET Papers
EXAM MAP