Which of the following statements has the truth value T ?
A: cube roots of unity are in Geometric progression and their sum is 1
B: $4+7>10$ iff $2+8<10$
C: $\exists x \in \mathbb{N}$ such that $x^2-3 x+2=0$ and $\exists \mathrm{n} \in \mathbb{N}$ such that n is an odd number
D: $3+\mathrm{i}$ is a complex number or $\sqrt{2}+\sqrt{3}=\sqrt{5}$
The p.d.f. of a continuous random variable X is $f(x)=\left\{\begin{array}{cl}\frac{x^2}{18} & , \text { if }-3 < x < 3 \\ 0 & \text { otherwise }\end{array}\right.$
Then $\mathrm{P}[|\mathrm{X}|<2]=$
The population of a town increases at a rate proportional to the population at that time. If the population increases from forty thousand to eighty thousand in 20 years, then the population in another 40 years will be
If the vectors $m \hat{i}+m \hat{j}+n \hat{k}, \hat{i}+\hat{k}, n \hat{i}+n \hat{j}+p \hat{k}$ lie in a plane then…