1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of a parallelogram whose diagonals are the vectors $2 \bar{a}-\bar{b}$ and $4 \bar{a}-5 \bar{b}$, where $\bar{a}$ and $\bar{b}$ are unit vectors forming an angle of $45^{\circ}$ is

A
$3 \sqrt{2}$ sq. units
B
$\frac{3}{\sqrt{2}}$ sq. units
C
$\sqrt{2}$ sq. units
D
$\frac{\sqrt{2}}{3}$ sq. units
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \lim\limits_{x \rightarrow \infty}\left(\frac{x+8}{x+1}\right)^{x+5}=\ldots $$

A
$e^4$
B
$\mathrm{e}^5$
C
$e^{11}$
D
$\mathrm{e}^7$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \cot ^{-1}\left(2 \cos \left(2 \operatorname{cosec}^{-1}(\sqrt{2})\right)\right)=\ldots $$

A
$\frac{\pi}{2}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
0
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{z}=x+\mathrm{i} y$ is a complex number, then the equation $\left|\frac{z+i}{z-i}\right|=\sqrt{3}$ represents the

A
circle with centre $(2,0)$ and radius $\sqrt{3}$
B
circle with centre $(0,2)$ and radius $\sqrt{3}$
C
circle with centre $(0,0)$ and radius $\sqrt{3}$
D
circle with centre $(0,-2)$ and radius $\sqrt{3}$
MHT CET Papers
EXAM MAP