1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two friends A and B apply for a job in the same company. The probabilities of A getting selected is $\frac{2}{5}$ and that of B is $\frac{4}{7}$. Then the probability, that one of them is selected, is

A
$\frac{8}{35}$
B
$\frac{18}{35}$
C
$\frac{26}{35}$
D
$\frac{34}{35}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $P_1$ and $P_2$ are perpendicular distances (in units) from point $(2,-1)$ to the pair of lines $2 x^2-5 x y+2 y^2=0$, then the value of $\mathrm{P}_1 \mathrm{P}_2$ is

A
,2
B
5
C
10
D
4
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x^3-7 x+6}{x^2+3 x} \mathrm{~d} x=$$

A
$\frac{x^2}{2}+3 x-\log x+\mathrm{c}$, where c is a constant of integration.
B
$\frac{x^2}{2}+3 x+2 \log x+\mathrm{c}$, where c is a constant of integration.
C
$\frac{x^2}{2}-3 x+2 \log x+\mathrm{c}$, where c is a constant of integration.
D
$\frac{x^2}{2}-3 x-\log x+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The cumulative distribution function of a discrete random variable X is given by

$\mathrm{X}=x$ $-1$ $0$ $1$ $2$
$\mathrm{F(X=x)}$ 0.3 0.7 0.8 1

Then $\mathrm{E(X^2)=}$

A
0.2
B
1.2
C
0.8
D
2.5
MHT CET Papers
EXAM MAP