1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $y(x)$ represented by $x=\sin t$, $y=a e^{t \sqrt{2}}+b e^{t \sqrt{2}}, t \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfies the equation $\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}=\mathrm{k} y$, then the value of k is k is

A
1
B
2
C
$-$1
D
0
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

A
0
B
1
C
$-$1
D
$\frac{1}{2}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $[x]$ denotes the greatest integer function, then $$\int_\limits0^5 x^2[x] d x=$$

A
$\frac{244}{3}$
B
$\frac{316}{3}$
C
$\frac{200}{3}$
D
$\frac{400}{3}$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f$ defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by

$$f(x)=\left\{\begin{array}{cc} \frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \\ k \quad, & x=\frac{\pi}{4} \end{array}\right.$$

is continuous, then k is equal to

A
$\frac{1}{2}$
B
$2$
C
$1$
D
$\frac{1}{\sqrt{2}}$
MHT CET Papers
EXAM MAP