1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{g}(x)=[\mathrm{f}(2 \mathrm{f}(x)+2)]^2$ and $\mathrm{f}(0)=-1, \mathrm{f}^{\prime}(0)=1$ then $g^{\prime}(0)$ is

A
$-$4
B
4
C
$-$3
D
3
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1} x$, then $x$ is

A
$\frac{1}{5}$
B
$\frac{2}{5}$
C
$\frac{3}{5}$
D
$\frac{4}{5}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The shaded area in the given figure is a solution set for some system of inequalities. The maximum value of the function $\mathrm{z}=4 x+3 y$ subject to linear constraints given by the system is

MHT CET 2024 16th May Evening Shift Mathematics - Linear Programming Question 14 English

A
38
B
36
C
33
D
34
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $z_1=5-2 i$ and $z_2=3+i$, where $i=\sqrt{-1}$, then $\arg \left(\frac{z_1+z_2}{z_1-z_2}\right)$ is

A
$\tan ^{-1}\left(\frac{22}{19}\right)$
B
$\tan ^{-1}\left(\frac{22}{13}\right)$
C
$\tan ^{-1}\left(\frac{21}{19}\right)$
D
$\tan ^{-1}\left(\frac{19}{22}\right)$
MHT CET Papers
EXAM MAP