1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Truth values of $\mathrm{p} \rightarrow \mathrm{r}$ is F and $\mathrm{p} \leftrightarrow \mathrm{q}$ is F . Then the truth values of $(\sim p \vee q) \rightarrow(p \vee \sim q)$ and $(p \wedge \sim q) \rightarrow(\sim p \wedge q)$ are respectively

A
$\mathrm{T, F}$
B
$\mathrm{F}, \mathrm{T}$
C
$\mathrm{T}, \mathrm{T}$
D
$\mathrm{F, F}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Water is being poured at the rate of $36 \mathrm{~m}^3 / \mathrm{min}$ into a cylindrical vessel, whose circular base is of radius 3 meters. Then the water level in the cylinder is rising at the rate of

A
$4 \pi \mathrm{~m} / \mathrm{min}$
B
$\frac{4}{\pi} \mathrm{~m} / \mathrm{min}$
C
$\frac{1}{4 \pi} \mathrm{~m} / \mathrm{min}$
D
$\frac{\pi}{4} \mathrm{~m} / \mathrm{min}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line having direction ratios $1,-4,2$ intersects the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the points $A$ and $B$ resp., then co-ordinates of points A and B are

A
$\mathrm{A}(-8,6,-7)\qquad$ $\mathrm{B}(-6,-2,-3)$
B
$\mathrm{A}(8,6,7)\qquad$ $\mathrm{B(6,2,3)}$
C
$\mathrm{A}(8,6,7)\qquad$ $\mathrm{B}(6,-2,-3)$
D
$\mathrm{A}(7,6,8)\qquad$ $\mathrm{B}(-3,-2,6)$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^2-4}{x^4+9 x^2+16} \mathrm{dx}=\tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ (where c is a constant of integration), then value of $f(2)$ is

A
1
B
2
C
3
D
4
MHT CET Papers
EXAM MAP