1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Numbers are selected at random, one at a time from two digit numbers $10,11,12 \ldots ., 99$ with replacement. An event $E$ occurs if and only if the product of the two digits of a selected number is 18 . If four numbers are selected, then probability that the event E occurs at least 3 times is

A
$\frac{87}{90^4}$
B
$\frac{348}{90^4}$
C
$87\left(\frac{4}{90}\right)^4$
D
$\left(\frac{4}{10}\right)^4$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $y(x)$ represented by $x=\sin t$, $y=a e^{t \sqrt{2}}+b e^{t \sqrt{2}}, t \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfies the equation $\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}=\mathrm{k} y$, then the value of k is k is

A
1
B
2
C
$-$1
D
0
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

A
0
B
1
C
$-$1
D
$\frac{1}{2}$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $[x]$ denotes the greatest integer function, then $$\int_\limits0^5 x^2[x] d x=$$

A
$\frac{244}{3}$
B
$\frac{316}{3}$
C
$\frac{200}{3}$
D
$\frac{400}{3}$
MHT CET Papers
EXAM MAP