1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

A
0
B
1
C
$-$1
D
$\frac{1}{2}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $[x]$ denotes the greatest integer function, then $$\int_\limits0^5 x^2[x] d x=$$

A
$\frac{244}{3}$
B
$\frac{316}{3}$
C
$\frac{200}{3}$
D
$\frac{400}{3}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f$ defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by

$$f(x)=\left\{\begin{array}{cc} \frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \\ k \quad, & x=\frac{\pi}{4} \end{array}\right.$$

is continuous, then k is equal to

A
$\frac{1}{2}$
B
$2$
C
$1$
D
$\frac{1}{\sqrt{2}}$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos ^{\frac{-3}{7}} x \cdot \sin ^{\frac{-11}{7}} x d x=$$

A
$\frac{-4}{7} \tan ^{\frac{-4}{7}} x+c$, where $c$ is a constant of integration.
B
$\frac{4}{7} \tan ^{\frac{4}{7}} x+c$, where c is a constant of integration.
C
$\frac{-7}{4} \tan ^{\frac{-4}{7}} x+c$, where c is a constant of integration.
D
$\frac{7}{4} \tan ^{\frac{4}{7}} x+c$, where c is a constant of integration.
MHT CET Papers
EXAM MAP